Review: Implicit Differentiation - 10/31/16

1 Implicit Differentiation

Example 1.0.1 Let's look at the circle $x^2 + y^2 = 25$. We want to find $\frac{dy}{dx}$. We are going to take the derivative of both sides with respect to x to get $\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25)$. Applying our derivative rules gives us $\frac{d}{dx}x^2 + \frac{d}{dx}y^2 = 2x + \frac{d}{dx}y^2 = 0$. Now what do we do with the y^2 ? I could use the power rule, but that would be taking the derivative with respect to y, namely looking at $\frac{d}{dy}y^2$. But I want $\frac{d}{dx}$. How do we fix this? I can use the Chain Rule! I can rewrite $\frac{d}{dx}y^2 = \frac{d}{dy}y^2 \cdot \frac{dy}{dx}$. When I do this, I get $2y \cdot \frac{dy}{dx}$. That means in total, I have $2x + 2y\frac{dy}{dx} = 0$. I'm trying to figure out what $\frac{dy}{dx}$ is, so I just solve for it: $\frac{dy}{dx} = \frac{-2x}{2y} = -\frac{x}{y}$.

Example 1.0.2 If $x^3 + y^3 = 6xy$, find $\frac{dy}{dx}$. Let's start by taking the derivative of both sides: $\frac{d}{dx}(x^3 + y^3) = \frac{d}{dx}6xy$. Let's try thinking about this in a different way: every time I take a derivative of something, I am going to mark it by writing down $\frac{d}{dx}$ where I fill in the blank with what letter I used. So here, first I took the derivative of x^3 , so that is $3x^2$. I follow it by writing $\frac{dx}{dx}$ because I used the power rule on x. Next I have $\frac{d}{dx}y^3 = 3y^2\frac{dy}{dx}$ since I used the power rule on y. Now for the 6xy, I'm going to need the product rule, so f(x) = 6x and g(y) = y, so $\frac{d}{dx}6x = 6\frac{dx}{dx}$ and $\frac{d}{dx}y = 1\frac{dy}{dx}$. Then using the product rule, I have $\frac{d}{dx}6xy = 6\frac{dx}{dx}(y) + \frac{dy}{dx}(6x)$. Note that $\frac{dx}{dx} = 1$ since the derivative of x is 1. So putting this all together, we have $3x^2 + 3y^2\frac{dy}{dx} = 6y + 6x\frac{dy}{dx}$. We can simplify this a little by dividing both sides by 3 to get $x^2 + y^2\frac{dy}{dx} = 2y + 2x\frac{dy}{dx}$. Now we need to solve for $\frac{dy}{dx}$. We can do this by getting all of the $\frac{dy}{dx}$ on one side and everything else on the other: $y^2\frac{dy}{dx} - 2x\frac{dy}{dx} = 2y - x^2$, so $(y^2 - 2x)\frac{dy}{dx} = 2y - x^2$. Dividing through, we get

$$\frac{dy}{dx} = \frac{2y - x^2}{y^2 - 2x}$$

Example 1.0.3 Let $4x^2 + 9y^2 = 36$. Find the equation for the tangent line at (0,2). Since we already have a point, we need to find the slope of the tangent line (aka the derivative). Taking the derivative of both sides gives $8x\frac{dx}{dx} + 18y\frac{dy}{dx} = 0$, so $\frac{dy}{dx} = \frac{-8x}{18y}$. If we evaluate this at the point (0,2), we get that the slope is 0. Thus our line is y - 2 = 0(x - 0), so y = 2.

Example 1.0.4 Let $y = \sin(3x + 4y)$. Find $\frac{dy}{dx}$. Taking the derivatives of both sides gives $\frac{d}{dx}y = \frac{d}{dx}\sin(3x + 4y)$, so $1\frac{dy}{dx} = \cos(3x + 4y) \cdot (\frac{d}{dx}(3x + 4y)) = \cos(3x + 4y) \cdot (3\frac{dx}{dx} + 4\frac{dy}{dx})$. Now we need to solve for $\frac{dy}{dx}$. We have $\frac{dy}{dx} - 4\cos(3x + 4y)\frac{dy}{dx} = 3\cos(3x + 4y)$, so

$$\frac{dy}{dx} = \frac{3\cos(3x+4y)}{1-4\cos(3x+4y)}$$

2 Inverse Trig Derivatives

Example 2.0.5 Find $\frac{dy}{dx}$ for $y = \arcsin(x)$. As long as $-\pi/2 \le y \le \pi/2$, we can rewrite this as $\sin(y) = x$. Now we can take the derivative using implicit differentiation: $\cos(y) \cdot \frac{dy}{dx} = 1\frac{dx}{dx}$, so

 $\frac{dy}{dx} = \frac{1}{\cos(y)}.$ Since $\cos^2(y) + \sin^2(y) = 1$, then $\cos(y) = \pm \sqrt{1 - \sin^2(y)}.$ But $\cos(y)$ is positive between $[-\pi/2, \pi/2]$, so we have $\cos(y) = \sqrt{1 - \sin^2(y)}.$ But $\sin(y) = x$, so we have $\cos(y) = \sqrt{1 - x^2}.$ Thus

$$\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1 - x^2}} - 1 < x < 1.$$

Example 2.0.6 What is $\frac{d}{dx} \arcsin(x^2 - 3)$? We can use the chain rule: let $f(u) = \arcsin(u)$ and $g(x) = x^2 - 3$, so $f'(u) = \frac{1}{\sqrt{1-x^2}}$ and g'(x) = 2x. Then $\frac{d}{dx} \arcsin(x^2 - 3) = \frac{1}{\sqrt{1-(x^2-3)^2}} \cdot 2x$.

Example 2.0.7 Find $\frac{dy}{dx}$ for $y = \arccos(x)$. As long as $0 \le y \le \pi$, we can rewrite this as $\cos(y) = x$. Now we can take the derivative using implicit differentiation: $-\sin(y)\frac{dy}{dx} = 1\frac{dx}{dx}$, so $\frac{dy}{dx} = -\frac{1}{\sin(y)}$. Since $\cos^2(y) + \sin^2(y) = 1$, then $\sin(y) = \pm \sqrt{1 - \cos^2(y)}$. But we have a domain of $0 \le y \le \pi$, and $\sin is always positive there, so we have <math>\sin(y) = \sqrt{1 - \cos^2(y)}$. Since $\cos(y) = x$, we can rewrite this as $\sin(y) = \sqrt{1 - x^2}$. Thus

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1 - x^2}} \quad -1 < x < 1.$$

Example 2.0.8 What is $\frac{d}{dx} \frac{\arccos(x)}{x}$? We can use the quotient rule: let $f(x) = \arccos(x)$ and g(x) = x, so $f'(x) = -\frac{1}{\sqrt{1-x^2}}$ and g'(x) = 1. Then $\frac{d}{dx} \frac{\arccos(x)}{x} = \frac{-\frac{x}{\sqrt{1-x^2}} -\arccos(x)}{x^2}$.

Example 2.0.9 Find $\frac{dy}{dx}$ for $y = \arctan(x)$. As long as $-\pi/2 < y < \pi/2$, we can rewrite this as $\tan(y) = x$. Then using implicit differentiation, we can take the derivative: $\sec^2(y)\frac{dy}{dx} = 1\frac{dx}{dx}$, so $\frac{dy}{dx} = \frac{1}{\sec^2(y)}$. Recall that $1 + \tan^2(y) = \sec^2(y)$, and since $\tan(y) = x$, then $\sec^2(y) = 1 + x^2$. Thus

$$\frac{d}{dx}\arctan(x) = \frac{1}{1+x^2}.$$

Example 2.0.10 Find $\frac{d}{dx}e^{\arctan(x)}$. We can use the chain rule: let $f(u) = e^u$ and $g(x) = \arctan(x)$, then $f'(u) = e^u$ and $g'(x) = \frac{1}{1+x^2}$. Then $\frac{d}{dx}e^{\arctan(x)} = e^{\arctan(x)} \cdot \frac{1}{1+x^2}$.

Practice Problems

- 1. If $x^3 + y^3 = 4$, find $\frac{dy}{dx}$.
- 2. If $x = \sqrt{x^2 + y^2}$, find $\frac{dy}{dx}$.
- 3. If $e^{xy} = e^{4x} + e^{5y}$, find $\frac{dy}{dx}$.
- 4. Find the equation of the tangent line of $x^2y + y^4 = 4 + 2x$ at the point (-1, 1).

Solutions

- 1. Taking the derivative of both sides gives $\frac{d}{dx}x^3 + \frac{d}{x}y^3 = \frac{d}{dx}4$, so $3x^2\frac{dx}{dx} + 3y^2\frac{dy}{dx} = 0$. Now we can solve for $\frac{dy}{dx}$, we get $\frac{dy}{dx} = \frac{-3x^2}{3y^2} = -\frac{x^2}{y^2}$.
- 2. We need to use the chain rule to take the derivative of $\sqrt{x^2 + y^2}$. This gives us $\frac{1}{2\sqrt{x^2+y^2}} \cdot \left(2x\frac{dx}{dx} + 2y\frac{dy}{dx}\right)$. Thus we have $1\frac{dx}{dx} = \frac{1}{2\sqrt{x^2+y^2}} \cdot \left(2x\frac{dx}{dx} + 2y\frac{dy}{dx}\right) = \frac{x+y\frac{dy}{dx}}{\sqrt{x^2+y^2}}$. Solving for $\frac{dy}{dx}$ gives $\sqrt{x^2+y^2} = x + y\frac{dy}{dx}$, so $\frac{dy}{dx} = \frac{\sqrt{x^2+y^2}-x}{y}$.
- 3. If we use the chain rule for all of these, we get $e^{xy} \cdot \left(\frac{dx}{dx}y + \frac{dy}{dx}x\right) = e^{4x} \cdot 4\frac{dx}{dx} + e^{5y} \cdot 5\frac{dy}{dx}$. Getting all of the $\frac{dy}{dx}$ on one side gives us $xe^{xy}\frac{dy}{dx} 5e^{5y}\frac{dy}{dx} = 4e^{4x} ye^{xy}$, so solving for $\frac{dy}{dx}$ gives

$$\frac{dy}{dx} = \frac{4e^{4x} - ye^{xy}}{xe^{xy} - 5e^{5y}}.$$

4. Since we already have a point, we just need the slope to find the equation of the line. We can get this by finding the derivative using implicit differentiation: $(2x\frac{dx}{dx}y + \frac{dy}{dx}x^2) + 4y^3\frac{dy}{dx} = 2\frac{dx}{dx}$. Bringing all the $\frac{dy}{dx}$ to one side gives us $x^2\frac{dy}{dx} + 4y^3\frac{dy}{dx} = 2 - 2xy$, so $\frac{dy}{dx} = \frac{2-2xy}{x^2+4y^3}$. Now to find the slope of the tangent line at the point (-1, 1), we just need to plug those values into the derivative to get $\frac{2-2(-1)(1)}{(-1)^2+4(1)^3} = \frac{4}{5}$. Then using point slope form, we get $y - 1 = \frac{4}{5}(x - (-1))$, so $y = \frac{4}{5}x + \frac{9}{5}$.