
Review: Implicit Differentiation - 10/31/16

1 Implicit Differentiation

Example 1.0.1 Let’s look at the circle x2 + y2 = 25. We want to find dy
dx

. We are going to take
the derivative of both sides with respect to x to get d

dx
(x2 + y2) = d

dx
(25). Applying our derivative

rules gives us d
dx
x2 + d

dx
y2 = 2x+ d

dx
y2 = 0. Now what do we do with the y2? I could use the power

rule, but that would be taking the derivative with respect to y, namely looking at d
dy
y2. But I want

d
dx

. How do we fix this? I can use the Chain Rule! I can rewrite d
dx
y2 = d

dy
y2 · dy

dx
. When I do this,

I get 2y · dy
dx

. That means in total, I have 2x + 2y dy
dx

= 0. I’m trying to figure out what dy
dx

is, so I

just solve for it: dy
dx

= −2x
2y

= −x
y
.

Example 1.0.2 If x3 + y3 = 6xy, find dy
dx

. Let’s start by taking the derivative of both sides:
d
dx

(x3 + y3) = d
dx

6xy. Let’s try thinking about this in a different way: every time I take a derivative
of something, I am going to mark it by writing down d

dx
where I fill in the blank with what letter

I used. So here, first I took the derivative of x3, so that is 3x2. I follow it by writing dx
dx

because I

used the power rule on x. Next I have d
dx
y3 = 3y2 dy

dx
since I used the power rule on y. Now for the

6xy, I’m going to need the product rule, so f(x) = 6x and g(y) = y, so d
dx

6x = 6dx
dx

and d
dx
y = 1 dy

dx
.

Then using the product rule, I have d
dx

6xy = 6dx
dx

(y) + dy
dx

(6x). Note that dx
dx

= 1 since the derivative

of x is 1. So putting this all together, we have 3x2 + 3y2 dy
dx

= 6y + 6x dy
dx

. We can simplify this a

little by dividing both sides by 3 to get x2 + y2 dy
dx

= 2y+ 2x dy
dx

. Now we need to solve for dy
dx

. We can

do this by getting all of the dy
dx

on one side and everything else on the other: y2 dy
dx
− 2x dy

dx
= 2y−x2,

so (y2 − 2x) dy
dx

= 2y − x2. Dividing through, we get

dy

dx
=

2y − x2

y2 − 2x
.

Example 1.0.3 Let 4x2 + 9y2 = 36. Find the equation for the tangent line at (0, 2). Since we
already have a point, we need to find the slope of the tangent line (aka the derivative). Taking the
derivative of both sides gives 8xdx

dx
+ 18y dy

dx
= 0, so dy

dx
= −8x

18y
. If we evaluate this at the point (0, 2),

we get that the slope is 0. Thus our line is y − 2 = 0(x− 0), so y = 2.

Example 1.0.4 Let y = sin(3x + 4y). Find dy
dx

. Taking the derivatives of both sides gives d
dx
y =

d
dx

sin(3x+ 4y), so 1 dy
dx

= cos(3x+ 4y) · ( d
dx

(3x+ 4y)) = cos(3x+ 4y) · (3dx
dx

+ 4 dy
dx

). Now we need to

solve for dy
dx

. We have dy
dx
− 4 cos(3x+ 4y) dy

dx
= 3 cos(3x+ 4y), so

dy

dx
=

3 cos(3x+ 4y)

1− 4 cos(3x+ 4y)
.

2 Inverse Trig Derivatives

Example 2.0.5 Find dy
dx

for y = arcsin(x). As long as −π/2 ≤ y ≤ π/2, we can rewrite this

as sin(y) = x. Now we can take the derivative using implicit differentiation: cos(y) · dy
dx

= 1dx
dx

, so
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dy
dx

= 1
cos(y)

. Since cos2(y)+sin2(y) = 1, then cos(y) = ±
√

1− sin2(y). But cos(y) is positive between

[−π/2, π/2], so we have cos(y) =
√

1− sin2(y). But sin(y) = x, so we have cos(y) =
√

1− x2. Thus

d

dx
arcsin(x) =

1√
1− x2

− 1 < x < 1.

Example 2.0.6 What is d
dx

arcsin(x2 − 3)? We can use the chain rule: let f(u) = arcsin(u) and
g(x) = x2 − 3, so f ′(u) = 1√

1−x2 and g′(x) = 2x. Then d
dx

arcsin(x2 − 3) = 1√
1−(x2−3)2

· 2x.

Example 2.0.7 Find dy
dx

for y = arccos(x). As long as 0 ≤ y ≤ π, we can rewrite this as cos(y) = x.

Now we can take the derivative using implicit differentiation: − sin(y) dy
dx

= 1dx
dx

, so dy
dx

= − 1
sin(y)

.

Since cos2(y)+sin2(y) = 1, then sin(y) = ±
√

1− cos2(y). But we have a domain of 0 ≤ y ≤ π, and

sin is always positive there, so we have sin(y) =
√

1− cos2(y). Since cos(y) = x, we can rewrite
this as sin(y) =

√
1− x2. Thus

d

dx
arccos(x) = − 1√

1− x2
− 1 < x < 1.

Example 2.0.8 What is d
dx

arccos(x)
x

? We can use the quotient rule: let f(x) = arccos(x) and

g(x) = x, so f ′(x) = − 1√
1−x2 and g′(x) = 1. Then d

dx
arccos(x)

x
=
− x√

1−x2
−arccos(x)

x2 .

Example 2.0.9 Find dy
dx

for y = arctan(x). As long as −π/2 < y < π/2, we can rewrite this as

tan(y) = x. Then using implicit differentiation, we can take the derivative: sec2(y) dy
dx

= 1dx
dx

, so
dy
dx

= 1
sec2(y)

. Recall that 1 + tan2(y) = sec2(y), and since tan(y) = x, then sec2(y) = 1 + x2. Thus

d

dx
arctan(x) =

1

1 + x2
.

Example 2.0.10 Find d
dx
earctan(x). We can use the chain rule: let f(u) = eu and g(x) = arctan(x),

then f ′(u) = eu and g′(x) = 1
1+x2 . Then d

dx
earctan(x) = earctan(x) · 1

1+x2 .

Practice Problems

1. If x3 + y3 = 4, find dy
dx

.

2. If x =
√
x2 + y2, find dy

dx
.

3. If exy = e4x + e5y, find dy
dx

.

4. Find the equation of the tangent line of x2y + y4 = 4 + 2x at the point (−1, 1).
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Solutions

1. Taking the derivative of both sides gives d
dx
x3 + d

x
y3 = d

dx
4, so 3x2 dx

dx
+ 3y2 dy

dx
= 0. Now we

can solve for dy
dx

, we get dy
dx

= −3x2

3y2
= −x2

y2
.

2. We need to use the chain rule to take the derivative of
√
x2 + y2. This gives us 1

2
√

x2+y2
·(

2xdx
dx

+ 2y dy
dx

)
. Thus we have 1dx

dx
= 1

2
√

x2+y2
·
(
2xdx

dx
+ 2y dy

dx

)
=

x+y dy
dx√

x2+y2
. Solving for dy

dx
gives√

x2 + y2 = x+ y dy
dx

, so dy
dx

=

√
x2+y2−x

y
.

3. If we use the chain rule for all of these, we get exy · (dx
dx
y+ dy

dx
x) = e4x · 4dx

dx
+ e5y · 5 dy

dx
. Getting

all of the dy
dx

on one side gives us xexy dy
dx
− 5e5y dy

dx
= 4e4x − yexy, so solving for dy

dx
gives

dy

dx
=

4e4x − yexy

xexy − 5e5y
.

4. Since we already have a point, we just need the slope to find the equation of the line. We can
get this by finding the derivative using implicit differentiation: (2xdx

dx
y+ dy

dx
x2) + 4y3 dy

dx
= 2dx

dx
.

Bringing all the dy
dx

to one side gives us x2 dy
dx

+ 4y3 dy
dx

= 2− 2xy, so dy
dx

= 2−2xy
x2+4y3

. Now to find

the slope of the tangent line at the point (−1, 1), we just need to plug those values into the

derivative to get 2−2(−1)(1)
(−1)2+4(1)3

= 4
5
. Then using point slope form, we get y− 1 = 4

5
(x− (−1)), so

y = 4
5
x+ 9

5
.
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