Review: Implicit Differentiation - 10/31/16

1 Implicit Differentiation

Example 1.0.1 Let's look at the circle $x^{2}+y^{2}=25$. We want to find $\frac{d y}{d x}$. We are going to take the derivative of both sides with respect to x to get $\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(25)$. Applying our derivative rules gives us $\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=2 x+\frac{d}{d x} y^{2}=0$. Now what do we do with the y^{2} ? I could use the power rule, but that would be taking the derivative with respect to y, namely looking at $\frac{d}{d y} y^{2}$. But I want $\frac{d}{d x}$. How do we fix this? I can use the Chain Rule! I can rewrite $\frac{d}{d x} y^{2}=\frac{d}{d y} y^{2} \cdot \frac{d y}{d x}$. When I do this, I get $2 y \cdot \frac{d y}{d x}$. That means in total, I have $2 x+2 y \frac{d y}{d x}=0$. I'm trying to figure out what $\frac{d y}{d x}$ is, so I just solve for it: $\frac{d y}{d x}=\frac{-2 x}{2 y}=-\frac{x}{y}$.

Example 1.0.2 If $x^{3}+y^{3}=6 x y$, find $\frac{d y}{d x}$. Let's start by taking the derivative of both sides: $\frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x} 6 x y$. Let's try thinking about this in a different way: every time I take a derivative of something, I am going to mark it by writing down $\frac{d-}{d x}$ where I fill in the blank with what letter I used. So here, first I took the derivative of x^{3}, so that is $3 x^{2}$. I follow it by writing $\frac{d x}{d x}$ because I used the power rule on x. Next I have $\frac{d}{d x} y^{3}=3 y^{2} \frac{d y}{d x}$ since I used the power rule on y. Now for the $6 x y$, I'm going to need the product rule, so $f(x)=6 x$ and $g(y)=y$, so $\frac{d}{d x} 6 x=6 \frac{d x}{d x}$ and $\frac{d}{d x} y=1 \frac{d y}{d x}$. Then using the product rule, I have $\frac{d}{d x} 6 x y=6 \frac{d x}{d x}(y)+\frac{d y}{d x}(6 x)$. Note that $\frac{d x}{d x}=1$ since the derivative of x is 1. So putting this all together, we have $3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x}$. We can simplify this a little by dividing both sides by 3 to get $x^{2}+y^{2} \frac{d y}{d x}=2 y+2 x \frac{d y}{d x}$. Now we need to solve for $\frac{d y}{d x}$. We can do this by getting all of the $\frac{d y}{d x}$ on one side and everything else on the other: $y^{2} \frac{d y}{d x}-2 x \frac{d y}{d x}=2 y-x^{2}$, so $\left(y^{2}-2 x\right) \frac{d y}{d x}=2 y-x^{2}$. Dividing through, we get

$$
\frac{d y}{d x}=\frac{2 y-x^{2}}{y^{2}-2 x} .
$$

Example 1.0.3 Let $4 x^{2}+9 y^{2}=36$. Find the equation for the tangent line at $(0,2)$. Since we already have a point, we need to find the slope of the tangent line (aka the derivative). Taking the derivative of both sides gives $8 x \frac{d x}{d x}+18 y \frac{d y}{d x}=0$, so $\frac{d y}{d x}=\frac{-8 x}{18 y}$. If we evaluate this at the point $(0,2)$, we get that the slope is 0 . Thus our line is $y-2=0(x-0)$, so $y=2$.

Example 1.0.4 Let $y=\sin (3 x+4 y)$. Find $\frac{d y}{d x}$. Taking the derivatives of both sides gives $\frac{d}{d x} y=$ $\frac{d}{d x} \sin (3 x+4 y)$, so $1 \frac{d y}{d x}=\cos (3 x+4 y) \cdot\left(\frac{d}{d x}(3 x+4 y)\right)=\cos (3 x+4 y) \cdot\left(3 \frac{d x}{d x}+4 \frac{d y}{d x}\right)$. Now we need to solve for $\frac{d y}{d x}$. We have $\frac{d y}{d x}-4 \cos (3 x+4 y) \frac{d y}{d x}=3 \cos (3 x+4 y)$, so

$$
\frac{d y}{d x}=\frac{3 \cos (3 x+4 y)}{1-4 \cos (3 x+4 y)}
$$

2 Inverse Trig Derivatives

Example 2.0.5 Find $\frac{d y}{d x}$ for $y=\arcsin (x)$. As long as $-\pi / 2 \leq y \leq \pi / 2$, we can rewrite this as $\sin (y)=x$. Now we can take the derivative using implicit differentiation: $\cos (y) \cdot \frac{d y}{d x}=1 \frac{d x}{d x}$, so
$\frac{d y}{d x}=\frac{1}{\cos (y)}$. Since $\cos ^{2}(y)+\sin ^{2}(y)=1$, then $\cos (y)= \pm \sqrt{1-\sin ^{2}(y)}$. But $\cos (y)$ is positive between $[-\pi / 2, \pi / 2]$, so we have $\cos (y)=\sqrt{1-\sin ^{2}(y)}$. But $\sin (y)=x$, so we have $\cos (y)=\sqrt{1-x^{2}}$. Thus

$$
\frac{d}{d x} \arcsin (x)=\frac{1}{\sqrt{1-x^{2}}} \quad-1<x<1
$$

Example 2.0.6 What is $\frac{d}{d x} \arcsin \left(x^{2}-3\right)$? We can use the chain rule: let $f(u)=\arcsin (u)$ and $g(x)=x^{2}-3$, so $f^{\prime}(u)=\frac{1}{\sqrt{1-x^{2}}}$ and $g^{\prime}(x)=2 x$. Then $\frac{d}{d x} \arcsin \left(x^{2}-3\right)=\frac{1}{\sqrt{1-\left(x^{2}-3\right)^{2}}} \cdot 2 x$.

Example 2.0.7 Find $\frac{d y}{d x}$ for $y=\arccos (x)$. As long as $0 \leq y \leq \pi$, we can rewrite this as $\cos (y)=x$. Now we can take the derivative using implicit differentiation: $-\sin (y) \frac{d y}{d x}=1 \frac{d x}{d x}$, so $\frac{d y}{d x}=-\frac{1}{\sin (y)}$. Since $\cos ^{2}(y)+\sin ^{2}(y)=1$, then $\sin (y)= \pm \sqrt{1-\cos ^{2}(y)}$. But we have a domain of $0 \leq y \leq \pi$, and \sin is always positive there, so we have $\sin (y)=\sqrt{1-\cos ^{2}(y)}$. Since $\cos (y)=x$, we can rewrite this as $\sin (y)=\sqrt{1-x^{2}}$. Thus

$$
\frac{d}{d x} \arccos (x)=-\frac{1}{\sqrt{1-x^{2}}} \quad-1<x<1
$$

Example 2.0.8 What is $\frac{d}{d x} \frac{\arccos (x)}{x}$? We can use the quotient rule: let $f(x)=\arccos (x)$ and $g(x)=x$, so $f^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}}$ and $g^{\prime}(x)=1$. Then $\frac{d}{d x} \frac{\arccos (x)}{x}=\frac{-\frac{x}{\sqrt{1-x^{2}}}-\arccos (x)}{x^{2}}$.

Example 2.0.9 Find $\frac{d y}{d x}$ for $y=\arctan (x)$. As long as $-\pi / 2<y<\pi / 2$, we can rewrite this as $\tan (y)=x$. Then using implicit differentiation, we can take the derivative: $\sec ^{2}(y) \frac{d y}{d x}=1 \frac{d x}{d x}$, so $\frac{d y}{d x}=\frac{1}{\sec ^{2}(y)}$. Recall that $1+\tan ^{2}(y)=\sec ^{2}(y)$, and since $\tan (y)=x$, then $\sec ^{2}(y)=1+x^{2}$. Thus

$$
\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}
$$

Example 2.0.10 Find $\frac{d}{d x} e^{\arctan (x)}$. We can use the chain rule: let $f(u)=e^{u}$ and $g(x)=\arctan (x)$, then $f^{\prime}(u)=e^{u}$ and $g^{\prime}(x)=\frac{1}{1+x^{2}}$. Then $\frac{d}{d x} e^{\arctan (x)}=e^{\arctan (x)} \cdot \frac{1}{1+x^{2}}$.

Practice Problems

1. If $x^{3}+y^{3}=4$, find $\frac{d y}{d x}$.
2. If $x=\sqrt{x^{2}+y^{2}}$, find $\frac{d y}{d x}$.
3. If $e^{x y}=e^{4 x}+e^{5 y}$, find $\frac{d y}{d x}$.
4. Find the equation of the tangent line of $x^{2} y+y^{4}=4+2 x$ at the point $(-1,1)$.

Solutions

1. Taking the derivative of both sides gives $\frac{d}{d x} x^{3}+\frac{d}{x} y^{3}=\frac{d}{d x} 4$, so $3 x^{2} \frac{d x}{d x}+3 y^{2} \frac{d y}{d x}=0$. Now we can solve for $\frac{d y}{d x}$, we get $\frac{d y}{d x}=\frac{-3 x^{2}}{3 y^{2}}=-\frac{x^{2}}{y^{2}}$.
2. We need to use the chain rule to take the derivative of $\sqrt{x^{2}+y^{2}}$. This gives us $\frac{1}{2 \sqrt{x^{2}+y^{2}}}$. $\left(2 x \frac{d x}{d x}+2 y \frac{d y}{d x}\right)$. Thus we have $1 \frac{d x}{d x}=\frac{1}{2 \sqrt{x^{2}+y^{2}}} \cdot\left(2 x \frac{d x}{d x}+2 y \frac{d y}{d x}\right)=\frac{x+y \frac{d y}{d x}}{\sqrt{x^{2}+y^{2}}}$. Solving for $\frac{d y}{d x}$ gives $\sqrt{x^{2}+y^{2}}=x+y \frac{d y}{d x}$, so $\frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}-x}{y}$.
3. If we use the chain rule for all of these, we get $e^{x y} \cdot\left(\frac{d x}{d x} y+\frac{d y}{d x} x\right)=e^{4 x} \cdot 4 \frac{d x}{d x}+e^{5 y} \cdot 5 \frac{d y}{d x}$. Getting all of the $\frac{d y}{d x}$ on one side gives us $x e^{x y} \frac{d y}{d x}-5 e^{5 y} \frac{d y}{d x}=4 e^{4 x}-y e^{x y}$, so solving for $\frac{d y}{d x}$ gives

$$
\frac{d y}{d x}=\frac{4 e^{4 x}-y e^{x y}}{x e^{x y}-5 e^{5 y}} .
$$

4. Since we already have a point, we just need the slope to find the equation of the line. We can get this by finding the derivative using implicit differentiation: $\left(2 x \frac{d x}{d x} y+\frac{d y}{d x} x^{2}\right)+4 y^{3} \frac{d y}{d x}=2 \frac{d x}{d x}$. Bringing all the $\frac{d y}{d x}$ to one side gives us $x^{2} \frac{d y}{d x}+4 y^{3} \frac{d y}{d x}=2-2 x y$, so $\frac{d y}{d x}=\frac{2-2 x y}{x^{2}+4 y^{3}}$. Now to find the slope of the tangent line at the point $(-1,1)$, we just need to plug those values into the derivative to get $\frac{2-2(-1)(1)}{(-1)^{2}+4(1)^{3}}=\frac{4}{5}$. Then using point slope form, we get $y-1=\frac{4}{5}(x-(-1))$, so $y=\frac{4}{5} x+\frac{9}{5}$.
